Metrics to improve control in
outsourcing software development
pr ojects

Laura Ponisio
BE Software Design
Amsterdam, The Netherlands
ml@ponisio .com

Pascal van Eck
Department of Computer Science, University of Twente
Enschede, The Netherlands
p.vaneck@utwente.nl

Abstract

Measurements serve as vital instruments to control projects involving software development
outsourcing. However, managers have found it difficult to develop and implement effective
measurement programs, in part because guidelines for choosing among concrete measure-
ments are scarce. We address this gap between research and practice by examining frame-
works and guidelines in the software process improvement literature. Our contribution com-
prises a framework that provides a set of measurements (selected from the research litera-
ture) for control of software development in a cooperative setting and a set of principles and
guidelines for the design of an information infrastructure that provides managers with control
information. We have validated our approach by showing our framework to an expert in out-
sourcing projects, who confirmed its potential.

Keywords

Software process improvement, measurements, metrics, outsourcing.

Acknowledgements

Thanks to the expert who confirmed our findings, helping us to validate the results presented
in this paper. We are also grateful for the helpful comments we received from the reviewers of
this paper.

Published in: 18th EuroSPI Conference Industrial Proceedings. 27. 1 29. June 2011, Roskilde
University, Denmark. Delta, Denmark. ISBN: 978-87-7398-153-5.

EuroSPI 2003 - 1

Session I: will be adapted later by the editor

1 Introduction

Making decisions that are better for value creation in current fast-changing software development sce-
narios demands dynamic monitoring and control mechanisms. Control through metrics is a critical
component of the success of software process improvement programs (SPI) [14,18]. Much has been
written about metric program implementation in SPI efforts [20,7,13,1,11,8]. But despite the im-
portance of metrics, few studies have been made of its role in enabling new networked outsourcing
models or of the software process by which control is improved through metrics. To address this gap,
in this paper we aim at selecting metrics that help managers of outsourcing projects to make software
that helps clients to meet their business goals in the current networked context of development pro-
cesses.

To examine these issues, this explorative study was designed to address the following questions: a)
how can managers increase control without losing flexibility? b) what has been written about concrete
metrics T their implementation problems, benefits and contexts i managers can choose from? and c)
what challenges did companies face when implementing software development metrics?

To answer these questions, a systematic literature survey has been carried out to develop a picture of
the shape of the measurements field through the lens of software project improvement in an outsourc-
ing context. By developing such a picture, we expose the ubiquity of approaches, help practitioners to
synthesise and reflect on existing work and contribute to focusing the direction of interest of project
managers. The current paper presents a subset of the results of this study in the form of a framework
(Section 3) that contains a set of organisational effectiveness measurements and an information infra-
structure that collects and distributes principles, lessons learnt and measurement data in software
development projects. This framework is distilled from research findings published over the last two
decades at the intersection of three different, but related fields: software process improvement (SPI),
metrics, and outsourcing. An overview of the relevant parts of this field is presented in Section 2.

2 SPI, Metrics and Outsourcing

2.1 SPI
The fundament al objective of software process
practices i n order to achieve i mprovements in quat

ware quality, stakeholder satisfaction and profitability, SPI techniques address a number of topics
such as software processes, standardisation, software metrics and project management.

Aaen et al. made a survey of the SPI literature and experiences from SPI practice [1]. The examples
from practice described in their paper illustrate that there is room to implement SPI plans in very dif-
ferent ways and that metrics must be adapted, at the time of implementing them, to the specifics of an
organisational environment.

All in all, although some of the approaches are extensively applied and offer unquestionable benefits
such as the possibility to evaluate an organisation against stable criteria, systematisation and prioriti-
sation [12], there is almost no discussion about how current networking conditions impact metrics on
SPI programs. In particular, how do current global development conditions affect the implementation
of metrics supporting an SPI initiative?

2.2 Metrics

People use measurements to gather feedback regarding the state of a project (for instance, complete-
ness, quality of requirements, and accuracy of project estimations), create orientation during the
change process, and determine how much the organisation has benefited from the changes derived
from improvement plans. Visible results are considered critical to success of any improvement plan:

2 - EuroSPI 2003

i mprov

ity

ano

Session I: will be adapted later by the editor

they keep participants focussed and motivated. In particular, it has been argued that members of an
organisation would put more effort in SPI activities if measurements prove a return on investment [14].

However, measuring involves several risks. Organisations experience difficulties gathering and apply-
ing measurements that are meaningful [1]. Having numbers to show does not mean per-se neither that
the measurements are relevant and meaningful, nor that they are accurate and reliable. Opportunistic
behaviour, for instance, might jeopardise any SPI effort on the grounds of protecting particular inter-
ests.

Iversen and Mathiassen report from a case study that analyses an engineering process in which a

metrics program is constructed and put into mse [13]
going SPI initiatives within the organisation. This article is of interest to us because it describes a

measurement program that went beyond the barrier of gathering data. Once implemented in the com-

pany Danske Dat a, the measurement pr ogrreom egesaer aMoed
over, lversen and Kautz [15] and Kautz [17] emphasise that to be successful, the metrics programs

i mpl emented should be defined according to the organi

All in all, measurements can be regarded as one of the means to gather feedback concerning the ef-
fect of the SPI effort, establishing baselines in the SPI programs and to demonstrating the extent to
which the goals of a program are met. In spite of the clear importance of metrics, we have observed
that outsourcing organisations are still lacking a portfolio of metrics defined to their specific information
needs.

2.3 Outsourcing

Outsourcing today is mostly performed in an inter-organisational network rather than by a single or-
ganisation. This change in the context of software development makes managers face the challenge
of having to control actions that are beyond traditional boundaries. Moreover, in this new context, open
source and outsourcing development share challenges related to geographically distributed develop-
ment such as project members working in arbitrary locations, rarely or never meeting face to face and
coordinating activities exclusively via e-mails and bulletin boards.

Mockus, Fielding and Herbsleb examined the development process of an open source application by
guantifying elements of software development such as developer participation, core team size, and
code ownership for the Apache web server open source software development project [19]. The study
shows that a large network of people (400 code contributors) cooperated to develop software and that
most of the code was made by a small group of developers (approximately 15 developers). It was
expected that these 15 developers arranged a partition of the code, to prevent making conflicting
changes. But measurements proved otherwise: parts of the system requiring changes were worked
upon by more than one developer, suggesting thus a healthy contribution coordination mechanism
based on mutual trust and respect.

The practical nature of the coordinating contribution mechanism, however, remains to be researched.
Specially viewing todaybés highly competitive outsour
that not only product quality is important: low customer perception of delivery quality may rule out a
supplier for the next project [6]. We hypothesise that part of this project success was due to the well
covered open source systemds information needs; whicl

3 Research findings

We present our research findings in a framework that consists of two parts: a set of organisational
effectiveness measurements (Section 3.1) and a set of information infrastructure principles (Section
3.2). Organisational effectiveness measurements are software metrics in a broader context, as we
explain below. The information infrastructure principles are the starting points for the design of a sys-
tem of components that provides managers with information to control software processes.

EuroSPI 2003 - 3

ession |I: will be adapted later by the editor

Organisational effectiveness metrics
Metric Organisation Reference
Size Functional size Hewlett Packard, Eclipse, Danske Data Gradya7*, lversen0D
Code Developer participation: how is work distributed? E.g., can
ownership we recognise "partitioning” in the code? Apache server Mockus00
Adherence to schedule: variation from agreed time of
Time yaiivery, absolute and relative o volume of project. Danske Data Iversen00, 03 and 08
Adherence to budget: variation from estimated use of R
E=] resources. Danske Data Iversen00, 03 and 06
Number of error reports relative to size in function points. Danske Data Iversen00, 03 and 06
Number of error reports, absolute. Danske Data Iversen00, 03 and 06
AT&T, Motorola, IBM, Barnard94*, Rosenberg94®,
Defect density Apache server, Eclipse, Danske Data Florac97, Mockus00
2 Defects per line of documentation Hewlett Packard Grady86*
5
@
-4 Detects per testing time Hewlett Packard Grady86*
Defects per thousands of non-commented source .
statements Hewlett Packard Grady86
ELELY Post-rel defects per th d lines of code added
ost-release per thousand lines of code added,
instead of delivered. Apache Server Mockus00
zz:—lﬁommenled source statements per engineering Hewlatt Packard Gr "
Cyclomatic Complexity 1BM Rochester SPI Kan95", McLoughlin10
System paritioning IBM Rochester SPI Kan95*
Fanin IBM Rochester SPI Kang5*, Forac97
Fan out IBM Rochester SPI Kang5*, Foracd7
Survey ir_rpersan, phone and mail, random, systematic |BM Rochester SPI Kangs*
.§ c C and stratified.
£%€ | satistaction —
13 % with the pment process (gL 1aire) Data Dansk Iversen00, 03, and 06
25
S
@ ® Employee " " " " "
satisfaction Satistaction with the development process (questionnaire) Data Dansk Iversen00, 03, and 06
Any lost bids Mot applicable or unreported McLoughlin10
38 Wark
2 E " r:n:‘noe Loss of reputation to the firm Not applicable or unreported McLoughlin10
£ 5
a
Satisfaction with the development process (questionnaire) Data Dansk Iversen00, 03, and 06
Number of individuals submitting reports (eg. bugs) Apache server Mockus00
Size of the development community Apache server Mockus00
Core team size Apache server Mockus00
Cumulative distribution of contributions to the code base Apache server Mockus00
i Resources used to develop the system relative to volume
of project hours (hoursiFP). Data Dansk Iversen00, 03 and 06
Gain per Year in Productivity SEI Capability Maturity Model for Software Herbslebad
Gain per Year in Early Detection of Defects SEI Capability Maturity Model for Software Herbsleb94
Average fixed defects per working day Hewlett Packard Grady86*
Time used in review meetings Small company Iversen00
@ " :
gyt Sochaovon per Ysarin Galendar Time 1o Develop SOINATE e Gapabiity Maturty Mode for Safware Herbslebg4
H § E Time
R 'g Time to resolve problem reports Apache server Mockus00
a
Percent overtime per 40 hours per week Hewlett Packard Grady86"
Resources used in coordination activities Small company Iversen00
Thousands of Dollars per Year Spent on SPI SEI Capability Maturity Model for Software Herbsleba4
Cost
Dollars per Software Engineer per Year Spent on SPI SEI Capability Maturity Model for Software Herbsleb94
Average engineering hours per fixed defect Hewlett Packard Grady86*
Reduction per Year in Post-Release Defect Reports SEI Capability Maturity Model for Software Herbsleb94
Business Value Ratio of SPI Efforts SE| Capability Maturity Model for Software Herbslebsd
Quality
Average fixed defects per working day Hewlett Packard Grady86*
Perception of delivery quality Large consultancy company VanEkris08

*According to Rico 1999

Fig. 1: The hierarchical diagram of measurements.

3.1 Organisational effectiveness measurements

ession will be adapted later by the edi

Information infrastructure (part 1)
Principles ‘What not to do Quote / Example Reference
Define clear outcomes to expect and collect the data
based on clear objectives. An example of a clear . . . lmproved procedures for
outcomes to expect s “to let all developers work on all 12 mPlement a set of metrics thatis oo oiafion of source code shouid
Sy arts of the product”. Using Basili's Goal Question not well suited to describe a concrete allow all developers to work in ail
determining :4 N hpd . DDd ng desian th N outcome. An example of a too general f th . di nd iversen00
goals ! etric rr_let od is a g w_ay to design the metrics to objective is "to give information about areas of i gcompamesprq lucts a
include in the program, being based on the goal that the effect of improvement initiatives™. should facilitate the extension of the
stakeholders expect to achieve from the metrics " development teams.”
program.
T . - . . “"We expect to gain a 10%
[0 have a clear goal such as improve efficiency by x % To underestimate the importance of improvement in eficiency has become
Match your is important, but do neither procrastinate nor forget to having process and product attributes an important focal '1'11:?;! the SPI
goals with choose the attribute to be measured to check if the that describe the goal, leaving the . ﬁ’u H pPoi ither the CEO | i 03
measurable goal is met. It should be clear to management that the decision of what should be measured ﬁ;?ﬁe‘;ﬁ’;;e;:; gzﬁcei{ongwhaf fversen
attributes chosen attributes to measure (and the metrics results) to the group responsible of the metric should be measured to show this 10%
describe the program's goal. pragram. - improvement.”
Metrics programs seem to be more successful if
people see that they bring improvements io the To not inform project managers about
Establish process or the product. It should be clear: exactly what data they should report, ""Those who report data to a metrics
incentive 1) what data to report, how they have to report it, what part of program need fo see some form of iversen00
structures 2) how to report that data, the process and product will be better advaniage in the program.”
3) why data they provide is important, by analysing that data.
4) show results based on the data.
A metrics program consume resources and therefore To have people work on metrics as an m?;;‘g;:;ﬁ; ;';gf:{;g:ﬁ;%fs
Establisha (© Setitin the context of a project for its own sake extra task of their current projects, organisation and made it much easier Dekkers99
ot should make the task of collecting and analysing the forgetting to recagnise that collecting - the participants to argue that iversen00
data easier. Moreover, you need the right staffing to and reparting melrics consume adequate resources should be iversen06
carry on a measurement program. resources (e.g., time). available.”
In the beginning, collect a small set of goal-oriented ~ Neither to start with a large metrics ;;;ﬂgzmﬁf;iﬁﬁ:ﬂ be
metrics. For example, "One company measured the set, nor to start with too general required K', report dala from day 1
number of fixed change requests delivered on time metrics. Too many resources will be This was an extremely ambitious
c E Start simple and the time used in review meetings and found that spent on them and people will not see undertaking, and as of yet, all the iversen00
g g change requests delivery on time had increased from accordingly advantages when the {actors have not bean measured, and
g % 45% to 77% and review meeting time was shortened (analysis report containing the) results _ = " iy
5 & by a factor 4." comes back to them. . ¥
Eg abandoned.
Pl Some measurements will prove to be too difficult to get :I'o undsrestlma_te measurement. For ""The first measurement report only .
an to throw 4 o " ‘ © instance, planning that the P . iversen06,
ue to wrong initial assumptions and inaccuracy in the N . included 20% of the projects and only .
oneaway measurement will be made in a . M Rifkin 91
ata access. completely automatic way. three out of six factors.
“external consultants acted as
(= Metrics pmgrarps must lak§ intfx account the existing To ot communicate dedrly the anal_ysrs ﬂ!fhﬂ cq:rsntqmcme and
e ae el work practices in the organisation, an.d the needs of advantages expected from carried out interviews w:tﬁ the iversen00
e the stakeholders affected by a potential effect of the implementing the ram developers [...] This provided the
metrics application. P g the program. knowledge necessary to define
‘metrics and to gather data. "
Consider To believe blindly the first result “Excluding a size measure seriously
potential . PR - obtained from counting function peints impeded reaching the original
problems k”;a:;m:;"‘:?n’:;:fg is critical bocause $120 153 wihout checking that results match objoetive of measuring efficiency and ||
when efficiency and productivity g goal and match questions, i.e., productivity, as there was no longer a
measuring : checking that numbers obtained match measure of the output of the software
size the perceived size of the system. projects.”
Match Attributes to measure, measurement data and it To see measurements as just m‘:f;’::‘;gﬁ ;”g;s';‘;;’;"';ﬁ:;
measurement results need to be recognised by management. gathering data without matching them very difficult to see any reiar‘mnship
with your Measurement must describe part of the projectinthe to & business goal. For instance. to - " perceived complexity of iversen06
organisation's eyes of stakeholders. Otherwise measurements use functien points count without
goal become unacceptable. normalising them when needed. the systems, and tha numbar that the
counting procedures had arrived at.”
“Enhancement projects thal continued
work on an existing system were
m’;ﬁ;‘;‘:m_ The measurements you choose should be accredited the entire function point
Ty sulte of complementary. Each measurement should contribute - For instance, to count code performed count of each module they modified, | iversen06
measure- '° IMProve the picture of the system oblained from the during the original development twice. even if the modifications were dekkersgg
ments measurement program. miniscule. This gave very few hours
per function point, or in other words,
unrealistically high productivity.”
Disregard unfamiliar areas of
Use Implementing metrics programs involves several knowledge (for instance, reverse
improvement branches of knowledge such as SPI, software engineering if management has "'The first measuremant report [...] iversenc0
knowledge development and reverse engineering. One solution background in software architecture) was criticized for being too academic.”
- might be to include external consultants. when making decisions about how to
-‘% @ implement the metrics program.
E&
'g & Use non- Facilitate collecting data by making it simple. Metrics “"There are some who simply do not
= invasive from finished projects would be used as a baseline . 8 enter data into the system. There are
measure- and metrics o finished parts of projects (when i ot 2 18P some that have misundersiood the | o
ments collecting them makes no harm) should be used when - definition of the field.” *"...results from
whenever possible. Beware that some stakeholders will not Rk 18 out of 56 projects that were
possible provide data. completed”
To be vague in the objectives and to
~ relate the metrics results to (About why developers did not enter
Publish o e e stvanties. Py Performance evaluations. The data) " this information was ot
I:J:jscl:ives realistic objectives Is & way to securé gathering data of ;bjedlve of zs\nr? melr\c.;is lg improve praviously used for anything” iversen%
and collected N e way we do things rather than to iversen
- data widely q“a’";:’ ‘:‘: 93; ! ;’“;’,as'?a';fa‘ci‘mpm"e the Melrics 4t who is to blame. Not Informing the *Data discipline was improved in the
% £ program wi ploy . results of the metrics program might next report ."
2 £ form undesirable rumours.
E & “Another problem was that
To not hear what employees have to " : ’
g E . . . L say about the melric:'Sryograrn and its quesﬂonnaﬂres{ | covered questions
Not only communicate the metrics, but incentivise implementation. This might cause the relating to contractual
Facilitate stakeholders to discuss the metrics program and its loss of va\uable‘ Improvements for the agreements and to the entire course iversen0o
debate results. Use their feedback to improve the program (such as improving the input of the project, when?as rhgse who
measurement program flelds of the system used o report answered the ques!aopnatre were
data) users who were only involved in
acceptance tests.”

Fig. 2: Information infrastructure: principles for the design of a system that provides managers

with information to control software processes (part 1).

This section reports software development outsourcing measurements for SPI found in the existing

Session I: will be adapted later by the editor

Fig. 3: Information infrastructure (part 2).

literature. Why do we use the term dédorganisational (

metrics? As we have argued before, software metrics need to be applied in their organisational con-
text, which, in current practice, often means globally distributed cooperative software development.
The notion of organisational effectiveness as proposed by Applegate [2], which we explain below,
provides us with the means to systematically identify the organisational context for software metrics.

Our framework provides a collection of software

notion for the domain of SPI.

The software metrics that comprise our set of organisational effectiveness measurements are metrics
that help managers to control software development projects. We are specifically interested in metrics
that project managers can use to control software development performed in a cooperative context,
such as outsourcing. Control in this context is the ability to develop an understanding of what is going
on in the project online and make informed decisions. In particular, we want to understand how these

(mos

measures can inform software development managers. T

of organisational effectiveness, which fAconcerns
base management deci si on sintetest [n indapuring drhasisatformalueffectiger e a s

ness measurements adapted from Applegate [2], when instantiated with metrics we found in the SPI
literature, are (i) results, which are needed to know how the software quality assurance process is
performing, (ii) stakeholder satisfaction, (iii) industry dynamics, and (iv) software process per-

wh at
of

formance, the set of ffactivities, met hods and transf or ma

software and the associated products, for example: product plans, design documents, code, test cas-
es and user manual so (SEI))

Our selection of metrics is presented in Figure 1. Note that already in 1999, more than 487 metrics
[4,10,9,16,22,23,5] for software process improvement had been identified [21]. Our selection compris-
es metrics that, according to existing literature, have been tried in real projects of real organisations,

as is indicated in the column | abelled O6O0Organisati or

Sof t war e 6 rganisétiens that have ingplemented that model.) This choice complies with our
acceptance criterion: managers of outsourcing projects should find them useful for their software de-
velopment outsourcing projects.

3.2 Information infrastructure

As stated before, we are interested in metrics that project managers can use to control software de-
velopment performed in outsourcing. According to general models of control, a controlling system (in
this case: a project manager) needs information about the system that it tries to control (in this case: a
software development project in a cooperative context). The software metrics literature discusses the
many different metrics identified in the software field that can serve as control information, and that we
have presented in the previous section. This information, however, needs to be made available to the
controlling system. The information infrastructure is the system that connects the controlled system to
the controlling system and supplies the controlling system with information.

In Figure 2, we present a set of principles that can serve as a starting point for the design of such an
information infrastructure. Like the set of metrics presented in the previous section, this set of princi-
ples is a selection of principles found in the research literature. We have selected those principles that,
based on experiences of applying SPI programs, provide managers with information to control soft-

6 - EuroSPI 2003

